
Malware Detection with Deep Neural Network
Using Process Behavior

Shun Tobiyama∗, Yukiko Yamaguchi†, Hajime Shimada†, Tomonori Ikuse‡ and Takeshi Yagi‡
∗Graduate school of Information Science, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
†Information Technology Center, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
‡NTT Secure Platform Laboratories

Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan

Email:∗tobiyama@net.itc.nagoya-u.ac.jp, †{yamaguchi, shimada}@itc.nagoya-u.ac.jp,
‡{ikuse.tomonori, yagi.takeshi}@lab.ntt.co.jp

Abstract—Increase of malware and advanced cyber-attacks
are now becoming a serious problem. Unknown malware which
has not determined by security vendors is often used in these
attacks, and it is becoming difficult to protect terminals from
their infection. Therefore, a countermeasure for after infection is
required. There are some malware infection detection methods
which focus on the traffic data comes from malware. However, it
is difficult to perfectly detect infection only using traffic data
because it imitates benign traffic. In this paper, we propose
malware process detection method based on process behavior in
possible infected terminals. In proposal, we investigated stepwise
application of Deep Neural Networks to classify malware process.
First, we train the Recurrent Neural Network (RNN) to extract
features of process behavior. Second, we train the Convolutional
Neural Network (CNN) to classify feature images which are
generated by the extracted features from the trained RNN. The
evaluation result in several image size by comparing the AUC of
obtained ROC curves and we obtained AUC= 0.96 in best case.

Keywords—malware infection detection; neural network; process
behavior

I. Introduction

Nowadays, the Internet is an essential part of our work.

On the other hand, cyber-attacks based on malware are also a

serious problem. The number of malware is increasing year by

year and cyber-attacks are more advanced and sophisticated.

In these advanced attacks, unknown malware which has not

determined by security vendors are often used for evading

malware detection system. Moreover, advanced malware is

also appeared which evade signature matching by modifying

own code dynamically. In this way, it becomes difficult to

perfectly defend terminal from attacks and demands for after

infection countermeasure are increasing.

Malware infection detection using traffic data is one of

the countermeasure after infection. However, finding recent

malware traffic is difficult because it imitates benign traffic.

Moreover, the attacks are becoming silent and hidden due to

the change of an attacker’s purpose which earns money by

stealing intellectual property. Thus, malware which takes long-

term to steal information are also appeared and they can reduce

traffic frequency. In this way, detecting malware infection is

not easy.

In this paper, we propose a new malware process detection

method using process behavior to detect whether a terminal is

infected or not. Our proposal uses two types of Deep Neural

Network (DNN) to adapt different characteristic of individual

operation flows. The one is Recurrent Neural Network (RNN)

which is used for feature extraction, and the other one is

Convolutional Neural Network (CNN) which is used for

feature classification. In the training phase of the method,

first of all, we record API call sequences as process behavior

and construct the feature extractor by learning language model

of API call based on language model with Long Short-Term

Memory (LSTM). Then we extract features from the trained

RNN and generate feature images. Finally, we train the CNN

with the feature images annotated with malware or benign. In

the validation phase, we calculate malware probability. Firstly,

we obtain a feature image by trained RNN and API call log.

Then we obtain probability by trained CNN and the feature

image.

II. Related works

In this section, we introduce previous researches of malware

detection method and recent researches about DNN.

A. Malware Detection Method

The countermeasures for malware is divided into two types.

The one is detecting malware files before they are executed to

prevent terminals from infection, and the other one is detecting

infected terminals to minimize the expansion of infection.

In the countermeasure of preventing infection, malware files

are detected by signature or behavior of malware. While a

detection error rate of signature-based detection is very low,

it can’t adapt to unknown malware because of a necessity

of signature in advance. To resolve this problem, behavior-

based detection method was proposed. This method finds mal-

ware files from behavioral or structural features of programs.

Ahmed et al. proposed the method to detect malware files

from spatial/temporal features of API calls [1]. They use the

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.151

577

features extracted from spatial information of API calls such as

arguments and return values, and temporal information such as

the sequence of API calls. The spatial information is extracted

using statistical analysis or information theoretic method. The

temporal information is extracted by the transition matrix

which modeled API call sequences with Markov chain.

In the countermeasure for after infection, there are many

researches focused on traffic data. Otsuki et al. detected

malware infection using appearance frequency of ASCII code

in traffic payload and the length of HTTP request [2]. They

also mention that the sequential feature is different between

malicious and normal traffic. However, the behavior-based

detection method has higher detection error rate. Moreover,

using only traffic-data-based method is insufficient because

recent benign traffic is more diversified and malware traffic

becomes less detectable.

B. Deep Neural Network

Neural Network (NN) is a mathematical model which

simulates a network structure of a brain. NN is consisted of

many neuron layers. DNN is a NN which has many hidden

layers. It is attracting various fields such as image recognition

and language processing, because it can automatically learn

features and abstract features.

Hinton et al. proposed Dropout which improves DNN

performance [3]. This method reduces a dependency between

neurons by dropping some outputs of neurons to avoid over-

fitting. The dropped neurons is chosen randomly for every

input. Thus, each training is performed with different structural

network and this reduces the dependency between neurons.

In CNN, it has two special layers such as a convolution

layer and a pooling layer. In the convolution layer, features are

extracted by convoluting filter to inputs. In the pooling layer,

an input is down-sampled to decrease the effect of small posi-

tion shifting. CNN is consisted of some sets of this two types

of special layers and normal NN. It is mainly used in image

recognition because it can recognize features regardless of the

appeared position. Krizhevsky et al. amazingly decreased the

error rate of object recognition dataset by using CNN [4].

In RNN, it has a special loop structure or memory units,

which retain the information of previous inputs or the state

of hidden layer. RNN can train sequential data because the

output depends on previous inputs. There is a problem in the

training phase of RNN that the error is often vanished while

long backpropagating input sequence. To avoid this problem,

Gers et al. proposed LSTM [5]. It avoids the error vanishing

problem by fixing weight of hidden layers to avoid error decay

and retaining not all information of input but only selected

information which is required for future outputs. RNN shows

good results in various fields which use sequential data such as

language processing or speech recognition. Mikolov et al. pro-

posed Recurrent Neural Network Language Model (RNNLM)

which is the language model using a simple RNN [6]. The

purpose of language modeling is predicting a next word from

previous inputs. In the RNNLM, words are converted to po-

tential vectors and the next word is predicted by the potential

vector of current input word and the history of previous inputs.

Semantic information of the word is stored in the potential

vector, and the relation between words can calculate using this

potential vector. Pascanu et al. proposed malware detection

method using RNN [7]. They first train RNN to construct API

call language model and then generate fixed length feature

vector which is converted from the obtained hidden vector

at each time. Feature vectors are then classified by logistic

regression or multi-layer perceptron.

III. ProposedMethod

In this section, we propose the malware process detection

method for discovering possible infected terminal. The pro-

posal applies DNN in 2 stages. The first stage extracts process

activities by RNN and conclude them to feature vectors. The

feature vectors is treated as an image and classified with CNN

based image classification.

A. Overview
The overview of proposed method is shown in Fig. 1.

Behavior of the process is composed of various activities such

as file management, and these activities consist of multiple

operations. When we record process behavior as an API call

sequence, the individual API call represents the operation of

the process, multiple API calls represent the activity, and

whole recorded API calls represent behavior of the process.

This hierarchical architecture is similar to the construction

of writings. One writings is composed of various sentences,

and these sentences are consisted of multiple words. For that

reason, we presume that we can extract the feature of process

behavior by using language model and we can train the feature

of process behavior to RNN. After training, we extract features

as feature vectors from the process for validation using trained

RNN.
The feature vectors extracted from the process behavior

log is converted to an image. This image potentially contains

various local features which represent process activities. We

apply CNN to classify these images by training local features.

The CNN trains imaged features of malware and benign

processes to create a classifier. In this way, our proposal

divides process classification to two parts and use suitable

DNN.
The training flow is divided to four parts as shown in Fig.

1. First, behavior of processes is monitored and generated

log files. Second, the RNN is trained to construct behavioral

language model by using log files. Third, features are extracted

from the log file by trained RNN and convert features to a

feature image. Finally, the CNN is trained with training feature

images which has malware or benign label.
After training DNNs, we evaluate the process for validation

with the trained DNNs. First, feature images are generated

from the process behavior log file by the trained RNN. Next,

these images are classified whether malware process or not by

the trained CNN. Then we calculate malware probability of

the process using the classifier output.
The detail of each procedure is explained in following

subsections.

578

Fig. 1. Overview of proposed method.

TABLE I
Logged Information.

Time Time when the Operation is executed

Process Name Process name of the Operation

PID Process ID of the Operation

Event Name of the Operation

Path Current directory when the Operation is executed

Result Result of the Operation

Detail More information about the Operation

B. Logging Process Behavior

We record behavior of all executed processes in predefined

length and times under predefined intervals. We use Process

Monitor1 to log behavior such as ReadFile, RegSetValue,
Thread Start, and so on. Behavior items which we logged

by Process Monitor is shown in Table I. The Result shows a

result code of the Operation like SUCCESS, ACCESS DENIED,
FILE NOT FOUND, and so on. The Detail shows some parts of

information about arguments. In this study, we use the logged

Operations as process behavior instead of API call sequence.

We performed 5 minutes logging and 5 minutes interval set

for 10 times. Log files are created for individual processes

which has different PID. Each recorded log contains 7 items

shown in Table I. We use input context of Event and Result

for malware classification and reminder becomes identifier of

the process. Since this section, we define the Operation as a

set of Event and Result.

C. Training RNN

Based on the Operations, we construct behavioral language

model. We use RNN with LSTM units for the model. The

RNN consists of an input layer x, a normal hidden layer h1,

two LSTM layers h2 and h3, and an output layer y. In training

phase, we also use Dropout [3] for non-recurrent connection.

The flow of the RNN is shown in Fig. 2. The input vector x
is the converted 1-hot vector which represents an individual

Operation OPt . The conversion is performed as follows.

1) Creating a dictionary in which IDs and Operations are

associated each other

1https://technet.microsoft.com/ja-jp/sysinternals/processmonitor.aspx

Fig. 2. Flow of RNN training.

2) Converting Operations to 1-hot vectors which is filled

with 0s excepting a position associated with the Opera-

tion ID (give 1 for this position).

The RNN is trained by repeatedly using log files.

First, we choose one log file and convert Operations =

{OP1,OP2, ...,OPL } to 1-hot vectors = {x1,x2, ...,xL }. Each 1-

hot vector xt is sequentially inputted to the RNN and it outputs

prediction yt . Then we calculate loss function by comparing

yt with correct answer xt+1. After input T Operations, weights

are updated by backpropagation.

There are some possibility that some Operations are only

appears in validation log files in validation phase because it is

not clear that training log files contain all Operations. To avoid

this problem, we anonymize a part of the Operations in training

log. We select a Operation in each log file which is appeared

less than 10 times in the file and replace them to "Unknown

Operation". This Operation replacement is performed for every

log file.

One epoch of learning means that all training log files are

inputted to RNN. The order of training log files is randomized

in every epoch. The RNN training is executed for multiple

epochs and we can obtain the trained feature extractor.

D. Feature Extraction and Imaging

We extract the feature of processes using trained RNN and

generate feature images. The flow of feature extraction is

shown in Fig. 3. The feature extractor we trained in Section

III-C can project a next Operation from previous series of

inputs. It means that the last hidden layer h3 contains infor-

mation of previous inputs. Moreover, in DNN, local features

are learned in layers which close to the input layer, and

abstracted features are learned in deeper layer with combining

local features. For these reasons, we expect that a behavioral

feature is contained in the deep layer of the feature extractor.

Accordingly, we regard a series of h3 as a feature of process

behavior.

To generate a feature image, we first convert the Operations

in the log file to 1-hot vectors same as Section III-C and

input them to RNN sequentially. Let L be the length of

Operations recorded in the log file. We extract the value of

3rd hidden layer h3 for every input and obtain series of feature

579

Fig. 3. Flow of feature extraction.

vector {h3
1
,h3

2
, ...,h3

L }. We designed feature classifier (Section

III-E) to accept fixed size images so that we need to convert

these series of vector to fixed length one because the length

of Operations differs between log files. The conversion is

described by following equations:

pk=
⎧⎪⎨⎪⎩

0 (k = 0)

� L+k−1
N � + pk−1 (1 ≤ k ≤ N)

(1)

fk =
1

pk − pk−1

pk∑

j=pk−1+1

h3
j , (2)

where fk is the element of the fixed length series of vector, N
is the height of the feature image, and pk is the last number

of kth vector set. The series of vector is divided into N sets

and calculate the average of each set. Let W be the dimension

of 3rd hidden layer, then the series of fixed vector can be

described as a matrix F.

F =
������
�

f1

f2

...
fN

	

�
=

������
�

f11 f12 . . . f1W

f21 f22 . . . f2W

...
...

. . .
...

fN1 fN2 . . . fNW

	

�

(3)

We map each element of F to the [0,1] space by sigmoid

function and multiply 255 to form 256 level gray scale image.

Finally, the matrix F is outputted as the feature image which

resolution is W × N .

E. Training CNN and Perform Malware Process Detection

There are many features of activities in a feature image.

Therefore, we use CNN to classify process local features

appeared in feature images into malware specific features and

benign features.

In the training phase, we train the CNN by using feature

images that are labeled malicious or benign. The structure

of the CNN is shown in Fig. 4. The CNN consists of an

input layer, two convolution-pooling layers, a fully-connected

layer, and an output layer. The first convolutional layer filters

the W0 × W0 × 1 input image with 10 kernels. The second

convolutional layer filters the W1 ×W1 ×10 output of previous

layer with 20 kernels. Each pooling layer receives the output

of the previous convolutional layer and reduced their size into

Fig. 4. Structure of the CNN.

Fig. 5. Logging environment.

1/2 by Max-Pooling with stride of 2. The dimension of the

output layer is two because the CNN is binary classifier.

In the validation phase, we use the trained CNN and

calculate malware probability of the process. When the CNN

receives a feature image of validation process, the CNN

outputs a two dimensional vector which members represent

malicious and benign degrees. If the input image is classified

as malicious, then the value of the malicious is higher than

the value of the benign. Malware probability p is calculated

by applying following sigmoid function to the malicious class

value.

p = Sig(y1) =
1

1 + exp(−y1)
(4)

IV. Experiment

To evaluate our proposal, we recorded behavior of mal-

ware and benign processes at the virtual environment which

separated from the Internet and investigate the efficiency of

proposed method with them.

A. Experiment Configuration

The logging environment is shown in Fig. 5. Malware files

are executed on the Windows under monitoring of Process

Monitor. The imitated environment of the Internet is simulated

by INetSim2, which is executed in dummy server. INetSim

simulates common Internet services, such as HTTP, SMTP,

DNS, FTP, and so on. All traffic from Windows XP are sent

to the dummy server, and the server returns dummy responses.

We regarded a process as a malware process which satisfies

any of the following conditions:

1) The process of the predetermined malware file (same

name)

2) The process which generated from the process 1)

3) The process which is injected malicious code from 1)

and 2)

We used Cuckoo Sandbox to confirm whether the process

satisfies condition 2) or condition 3) or not. Malware files are

2http://www.inetsim.org/

580

TABLE II
Parameter settings of the RNN.

Item Cond. 1 Cond. 2 Cond. 3

Dimension of h1 30 30 10

Dimension of h2, h3 350 30 20

Other parameters Epoch num: 5, Minibatch size: 20

executed in the Cuckoo Sandbox and traced malware process

behavior to determine generated and injected processes.

We used 81 malware process log files and 69 benign process

log files for training and validation, which were logged and

determined by the above method. Malware process log files

were obtained from 26 malware files which are collected by

NTT Secure Platform Laboratory from April 2014 to October

2014. Those malware files were classified into 11 families by

Symantec. In the malware log files, 46 files were satisfied

condition 1), 33 files were satisfied condition 2), and 2 files

were satisfied condition 3).

In the RNN training phase, we used 44 malware process

logs and 39 benign logs for training. We selected those files so

that the total Operation length in files of malware and benign

classes become almost same. Types of the Operation appeared

in all files were 81.

We also trained and evaluated the CNN by 5-fold cross

validation using 150 feature images generated from the trained

RNN. Approximately 120 images were used for training, and

the remaining images were used for validation in each cross

validation.

To compare the performance of the classifier in different

parameters, we trained and validated the RNN/CNN with

several parameters. The used parameters are shown in Table II

and Table III. We first set the size of feature image exceedingly

large compared with the amount of data for training. This is the

validation Condition 1. Then we evaluated with much smaller

feature image size and it becomes Condition 2 and 3. We set

the first RNN parameter by referring the settings of [8] which

is using RNN with LSTM [5] for language modeling. The

CNN parameters was also set by referring LeNet [9], which is

used for recognizing hand written digit in 28×28 pixel image.

B. Evaluation Method

In multi-class classification problem, Positive means that an

object x belongs to the class a due to exceeding a threshold

(Th), otherwise it becomes Negative. In this method, the

problem becomes classification into two classes so that the

number of the threshold becomes only one. Let y be the result

of classification of x. In this situation, True Positive (TP),

False Positive (FP), True Negative (TN), False Positive (FN)

are defined as shown in Table IV. True Positive Rate (TPR) is

delivered by TP/P, and False Positive Rate (FPR) is delivered

by FP/N. We also use Accuracy Rate which is delivered by

(TP+TN)/(P+N). We evaluate the efficiency of the classifier

by Area Under the Curve(AUC) which is calculated from ROC

curve. ROC curve is a graph which indicates a relation between

TABLE III
Parameter settings of the CNN.

Item Cond. 1 Cond. 2 Cond. 3

Conv1 Input size W0 350×350 30×30 20×20

Other parameters Input channel: 1, Output channel: 10

Filter size: 5×5

Pool1 Input size W1 346×346 26×26 16×16

Other parameters Input channel: 10, Output channel: 10

Filter size: 2 × 2, Stride: 2

Conv2 Input size W1/2 173×173 13×13 8×8

Other parameters Input channel: 10, Output channel: 20

Filter size: 5×5

Pool2 Input size W2 169×169 9×9 4×4

Other parameters Input channel: 20, Output channel: 20

Filter size: 2 × 2, Stride: 2

Dimension of m 1000 250 40

Other parameters Epoch num: 50, Minibatch size: 20

TABLE IV
Class classification problem.

Classified class

y = a(Positive) y � a(Negative)

Real x ∈ a TP FN P=TP+FN

class x � a FP TN N=FP+TN

TPR and FPR under threshold values. In our method, processes

are classified malware or benign with malware probability p
delivered by (4). The range of p is [0,1], thus the range of

threshold value is also [0,1]. We calculated ROC curve for

each condition by regarding TPR as detection rate of malware

processes and FPR as error detection rate of benign processes.

Moreover, we compared the AUC in each condition to evaluate

classifier efficiency.

C. The Experimental Result and Discussion

Fig 6 shows ROC curves. The horizontal axis means the

error detection rate, and the vertical axis means the detection

rate. Five Solid lines represent the individual ROC curve of

5-fold cross validation, and the broken line represents the

micro average of individual ROC curve. The average AUC

of Condition 1, 2, 3 were 0.80, 0.96, 0.92 respectively. Thus,

our proposal can detect malware processes in high precision.

In our proposed method, the feature of process behavior is

trained first, and then classify the process using the feature

image. In this section, we discuss validity of training the

feature extractor.

If the RNN is trained well, some kind of regularity should

be appeared in the extracted features. Therefore, we analyzed

the series of feature vector which is extracted in Condition

2. We converted individual vector to two dimensional vector

by principal component analysis. Then we plotted them to

three dimensional graph. The example of graphs are shown in

Fig. 7. Verclsid.exe (Fig. 7(a)) is benign process, cmd.exe

581

(a) Condition 1 (b) Condition 2 (c) Condition 3

Fig. 6. ROC curves of each condition.

�

���
�

�
�

�

�

�

�

�

�

�

�

	
������
������	������

(a) verclsid.exe (benign)

�

��� �
�

�
�

�

�

�

�

�

�

�

�

	
���������	����	�

(b) cmd.exe (Trojan.Zbot)

�

��� �
�

�
�

�

�

�

�

�

�

�

�

	
������� �	�����	

(c) net.exe (Trojan.Zbot)

Fig. 7. Example of analyzed feature vectors.

and net.exe (Fig. 7(b), (c)) are different malware processes

but belong to Trojan.Zbot family. X axis means the vector

sequence, Y and Z axis means the value of vector element.

As in cmd.exe and net.exe, distribution of some vector

members are resemble each other (green part) even if the

process binary is different. Moreover, partially similar points

are also seen around the sequence 0 to 200 among three of

them (red part). The Operation sequence of those processes are

also resemble. Thus, we can say that the extracted features

represents the behavior of process. Hence we can also say

that the feature extractor is properly trained. On the other

hand, in Condition 1, the amount of data we used for training

and validation may not be large enough compared with the

complexity of DNNs so that it shows small AUC. Thus, we

will be able to classify malware processes with much more

preciseness by using larger amount of data.

V. Conclusion

In this paper, we proposed the malware process detection

method with two stage DNNs for infection detection. Our

proposal detects malware process by classifying the feature

images by the CNN. The feature image is generated from

extracted behavioral features by behavioral language model

which is constructed with RNN. We validated the classifier

with 5 fold cross validation using 150 process behavior log

files. We compared the result of validation which was per-

formed in several conditions and got best result AUC= 0.96

when the feature image size was 30 × 30. We also analyzed

the feature which is extracted from trained RNN with principal

component analysis to proof effectiveness of the proposal. On

the other hand, we couldn’t utilize large scale DNN due to the

small amount of data so that increasing data amount becomes

future work. Increasing the amount of data to validate dataset

is also future work.

References

[1] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, “Using spatio-
temporal information in api calls with machine learning algorithms for
malware detection,” in Proc. of the 2nd ACM workshop on Security and
artificial intell., 2009, pp. 55–62.

[2] Y. Otsuki, M. Ichino, S. Kimura, M. Hatada, and H. Yoshiura, “Evaluating
payload features for malware infection detection,” J. of Inform. Process.,
vol. 22, no. 2, pp. 376–387, 2014.

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” CoRR, vol. abs/1207.0580, 2012.
[Online]. Available: http://arxiv.org/abs/1207.0580

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural inform.
process. syst., 2012, pp. 1097–1105.

[5] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[6] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model.” in 11th Annu. Conf.
of the Int. Speech Commun. Assoc. 2010 (INTERSPEECH), vol. 2, 2010,
pp. 1045–1048.

[7] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in 2015 IEEE Int. Conf.
on, Acoust., Speech and Signal Process. (ICASSP), 2015, pp. 1916–1920.

[8] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” CoRR, vol. abs/1409.2329, 2014. [Online]. Available:
http://arxiv.org/abs/1409.2329

[9] Theano Development Team, “Convolutional Neural Networks(LeNet),”
http://deeplearning.net/tutorial/lenet.html.

582

